

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

System integrator perspective

Festus Coetzee

Düsseldorf, 10 March 2015

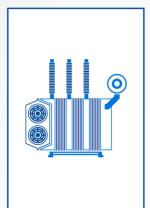
Overview

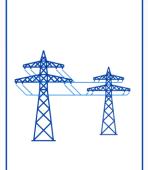
- » ABB at a glance
- » Challenges of future Grids and Applications
- » Energy storage is not without its technology risks
- » Safety measures considered when designing a safe battery energy storage system
- » Battery energy storage system block diagram
- » Conclusion

A global leader in power and automation technologies

Leading market positions in main businesses

merger of Swiss (BBC, 1891) and Swedish (ASEA, 1883) engineering companies





How ABB is organized

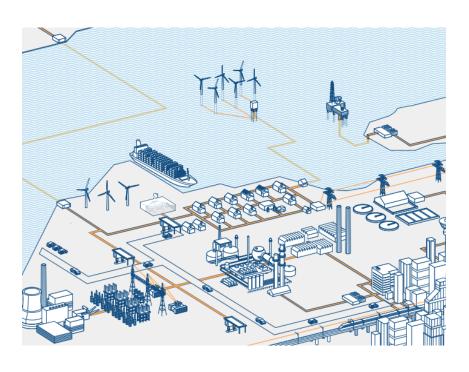
Five global divisions

Power Products

Power Systems

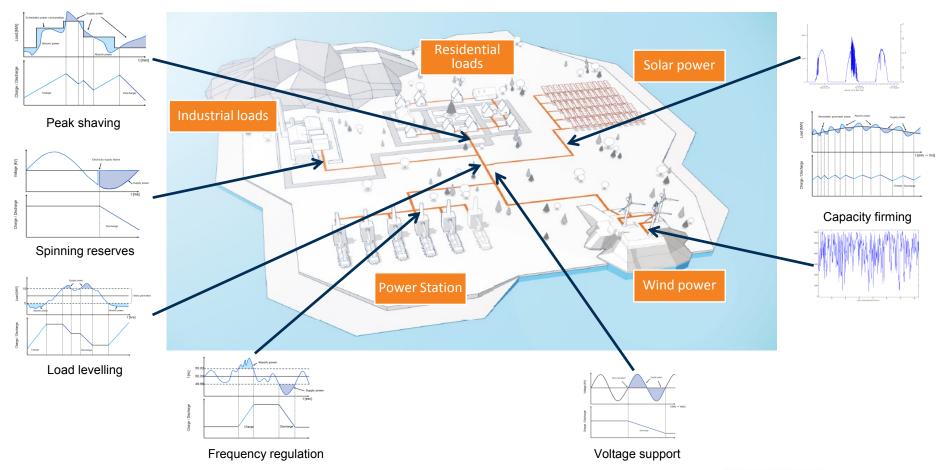
Discrete Automation and Motion

Low Voltage Products


Process Automation

Challenges of future power grids

- » Wind and solar power
- » Natural gas and oil prices
- » T&D bottlenecks
- » Power quality issues
- » Ancillary services
- » Increase in Renewables
- » Tools for stability
 - » Interconnections
 - » T&D upgrades
 - » Flexible generation
 - » Demand-side management
 - » Energy storage



Battery energy storage systems

Applications

10 Mar 2015

Technology Risks

Risk Category	PHS	CAES	A-CAES	ETES	H ₂ & Fuel Cells	Lead Acid	NaS	Li-ion	Na-NiCl	VRB	Flywheel	SMES	Supercap	Metal-Air	
---------------	-----	------	--------	------	-----------------------------	-----------	-----	--------	---------	-----	----------	------	----------	-----------	--

Health & Safety	Fire
	Leakage
	Mechanical
	Magnetic
Environmental	Contamination
	Visual impact

Fire at a battery energy storage facility

Rupture of the penstock/ tunnel at a pumped hydro plant under water pressure

Intrinsic risks of energy stored in confined volume. Risks can be mitigated by good engineering.

Technology Risks

10 Mar 2015 STALLION-STABALID seminar, Düsseldorf

Intrinsic risks of energy stored in confined volume. Risks can be mitigated by good engineering.

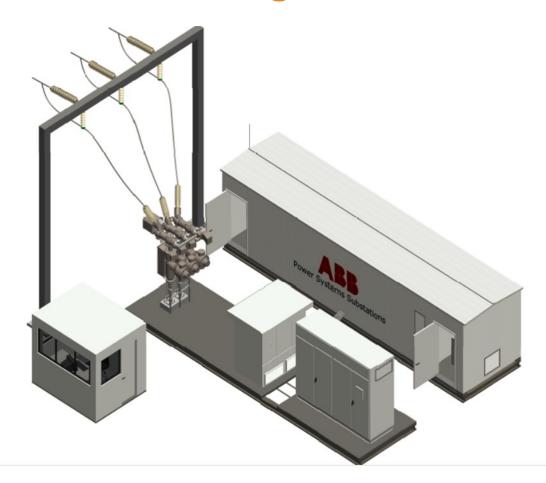
Measures considered when designing a safe battery energy storage system

» Preventative measures

- » Monitoring battery health battery management systems is key to converting battery status to electrical signals and communicate this information to the energy storage system controller
- » Personal safety/OHS isolation, lock out procedures, intruder control and various other measures to protect people from electrical shock
- » Training ensuring only fully qualified and certified permit holders enter battery energy storage substations

» Mitigation measures

- » Mechanical safety ensuring designs are able to deal with mechanical forces due to high short circuit levels
- » Electrical safety introducing fuses, DC breakers and AC breakers to break overload conditions and interrupt short circuit faults
- » Environmental safety designing of buildings/containers/oil sumps to comply with building regulations, environmental impact and personal safety
- » Fire fighting last frontier in safety measure to limit the impact of fire



Battery energy storage systems

EssPro™ Grid block diagram

* Battery management system

Energy Storage Road to Commercialization

2011-2015
Grid
Integration
Pilot Projects

1990-2000
Technical feasibility

Battery safety in the news

- » Plug-in electric vehicle fire incidents several (8) car manufacturers have had problems in recent years
- » Recall for overheating laptop, tablet batteries tops 300,000 14th November 2014
- » NTSB blames bad battery design—and bad management—in Boeing 787 fires 2nd December 2014
- » Airlines: No rechargeable batteries:
 - » United Airlines 3rd March 2015
 - » Delta Airlines 1st February 2015
 - » American Airlines 23rd February (some types)
 - » Air France stopped accepting bulk
 - » Still allowing batteries inside equipment (e.g. laptops) as it is creating «buffer» and protection

Conclusion

- » Energy storage is one method to control and manage the ever increasing demand being placed on our resources and electrical grids
- » Energy storage not new, but different storage mediums are still evolving
- » It is essential to create minimum safety standards to regulate and manage the expected increase in batteries being used as energy storage medium
- » Today there is no agreed standard (IEC, ANSI) setting out the safe design of battery energy storage systems connected to electrical grids.
- » The lack of standards will continue to put batteries and the use of batteries in applications in the news for all the wrong reasons.

10 Mar 2015

STALLION-STABALID seminar. Düsseldorf

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Thank you! System integrator perspective

Festus Coetzee

Düsseldorf, 10 March 2015