

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Advanced sensors

<u>Elisabeth LEMAIRE</u>, David BRUN-BUISSON, Sébastien DUMENIL, Mélanie ALIAS, Sylvie GENIES, Yves-Marie BOURIEN, Romain TESSARD CEA

Düsseldorf, 10 March 2015

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

CEA-LITEN institute: New technologies for Energy

Thermal/biomass/H₂

Nanomaterials

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

The sensors used

The sensors used: deformation gauge

Principle

Small resistive circuit made of several coils which extend under the influence of a local deformation of the structure on which it is closely attached.

- ✓ Gauge resistance proportional to the extension of the measuring point
- Measurement with Wheatstone bridge to increase precision: resolution 1 µm/m
- Use of rosette gauge to measure deformation in several directions

The sensors used: deformation gauge

Application to Li-ion batteries

• Electrochemical "breathing"			Disch	arge pi	ocess	
Depends on the nature of the active materia Amplitudes linked to the internal design	al	Ŧ	[LixHw]	Contraction	[LikHb] [Hh]	
(winding, mandrel)		Charged state			Discharged state	

Electrode	Positive		Negative	Clabeland	
Active material	Li _x Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂	Li _x FePO ₄	Li _x C ₆	Global volume	
Volume variation	-3,8%	-6,5%	+11	Variation	
Technology	х		х	+ 7,2%	
Technology		х	х	+ 4,5%	

<u>Swelling</u> due to the increase of the internal pressure (gas emission)

- Dependent on the volume of gas (solvents, potential windows)
- Continuous dilation expected during aging

10 Mar 2015 STALLION-STABALID seminar, Düsseldorf

The sensors used: acoustic emission

 \rightarrow Types of phenomena that can be recorded:

Tests performed

Different cell chemistries and designs **>>** Pouch, LTO/LFP Pouch, LTO/NCO 15 Ah 22 Ah

Cylindrical, C/LFP 15Ah

Prismatic, C/LFP

40 Ah

- Electrical tests (not presented here) **》**
 - Optimisation of sensor attachment and position on the cell **》**
 - Evaluation of SOC / SOH indication by sensors **》**
- Safety tests in ARC **>>**
 - Thermal stability: overheating up to thermal runaway **>>**
 - Overcharge in adiabatic condition (worst case) **》**

Thermal stability tests

- » Performed in an Accelerated Rate Calorimeter (ARC)
- » Overheating up to thermal runaway

Thermal stability tests / Deformation gauge

Prismatic, C/LFP

- » Very strong deformation: signal saturation
- » Deformation begins around 45°C/ thermal runaway 90°C

 \rightarrow signal different enough from normal operation to be used by BMS

Thermal stability tests / Deformation gauge

Pouch, LTO/NCO

» Large deformation measured

ightarrow Swelling of the pouch

- » No explanation about the opposite behavior of J1 and J3 (yet symmetric)
 - \rightarrow Pouch deformation too random

Thermal stability tests / Acoustic emission

→ ARC is highly a "polluted" environment: noise in terms of mechanical waves (ventilation/electromagnetic)

Cylindrical, C/LFP

Thermal stability tests / Acoustic emission

Overcharge tests

- » Initial standard charge @C/2
- » Overcharge @1C with floating 2 x Vmax
 - » Target 200% overcharge
 - » Stop if temperature increase >10°C/min
- » Tests done in ARC for thermal and safety aspect
 - » ARC blast box as a container
 - » Adiabatic calorimeter: worst case (no heat dissipation)

Overcharge tests / Deformation gauge

Pouch, LTO/NCO

Simultaneous increase of deformation and temperature **>>**

J1raw

Large deformation recorded on pouch cell **》**

10 Mar 2015 STALLION-STABALID seminar, Düsseldorf

 Predictive detection of degradation mechanism

Interest of acoustic emission to have BMS with overcharge detection

Rise of EA at 4.1V (55°C) _140% overcharge 160% of overcharge : large high level energy Overcharge of LEC14 160% :High level energy AE Temperature (°C) Absolute Energ Absolute Energy (aJ) Temperature(°C 100 120 130 140 150 160 overcharge (%) 170 110 180 200 190 140% :High level energy AE

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

ABALT

- Rise of EA at 104% overcharge **>>** with no high level energy AE
- Cell showed electrolyte leakage **》**

108

Absolute Energy (aJ) Temperature(°C)

112

110

50

40

30

20

114

Temperature (°C)

10 Mar 2015 STALLION-STABALID seminar, Düsseldorf

Ω

100

102

104

106

overcharge (%)

Conclusions: sensors for SOS indication

	Thermal stability	Overcharge
Acoustic emission sensors	Early detection Data treatment and calibration required	Early detection Absolute energy as parameter
Deformation gauges	Large temperature variation alters measurement reliability	Strong signal Simultaneous or before temperature rise

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Thank you! Advanced sensors

Elisabeth LEMAIRE, CEA elisabeth.lemaire@cea.fr

Düsseldorf, 10 March 2015