

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Risk assessment of the battery system

F. J. Soares, INESC Porto Jos van der Burgt, DNV GL

Düsseldorf, 10 March 2015

INESC TEC is an Associate Laboratory with 30 years of experience in R&D and technology transfer. It incorporates 12 R&D Centres and one Associate Unit with complementary competences.

INESC TEC mission is to advance science and deploy high technology in the service and industrial sectors by creating and spawning research teams who perform science based innovation.

INESC TEC brings together more than 800 collaborators, of which around 300 have PhDs, forming a robust cluster with complementary skills and with notable international presence.

INESC Technology and Science

R&D Centers position along the value chain

Risk Analysis – Methodology

1. Risk Identification

 \rightarrow Risks that may appear in each stage of the battery life cycle;

2. Risk Evaluation \rightarrow Qualitative evaluation of the risks;

3. Recommended Mitigation Measures

 \rightarrow Safety measures to mitigate the risks;

 Risk Re-evaluation → Qualitative evaluation of the risks assuming that the recommended mitigation measures were implemented.

- » Results obtained from surveys made to the STABALID partners
- » Literature review
- » Expertise of specialized staff of SAFT, INERIS, TÜV and EDPD

STABALID

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

- » Two analyses were made for each stage of the battery life cycle:
 - » Internal problem analysis
 - » External peril analysis

» Risks were mapped in the battery life cycle stages

2. Risk Evaluation

» Risks probability of occurrence (P) and severity (S) were defined upon agreement with project partners

Level	Probability
1	$P \leq 10^{-9} / h \rightarrow$ Improbable Event
2	$10^{-9} < P \le 10^{-7} / h \rightarrow \text{Remote Event}$
3	$10^{-7} < P \le 10^{-5} / h \rightarrow \text{Occasional Event}$
4	$P > 10^{-5} / h \rightarrow \text{Probable Event}$

Level	Severity	Description
1	Minor	 Slight degradation of battery performance → the owner can still use the battery Maintenance operation is advisable, but not mandatory → limited cost impact Low risk for user or operator → small reduction in safety conditions
2	Major	 Considerable degradation of battery performance → the owner can still use the battery but a quick maintenance is requested Low risk for user or operator → important reduction in safety conditions
3	Hazardous	 The battery is out-of-service → possibility of significant damage on the battery Immediate maintenance is mandatory → significant intervention cost Low risk for user or operator (possible injury) → large reduction in safety conditions
4	Catastrophic	 The battery is out-of-service → major damage on the battery Significant risk for user or operator (significant or fatal injury) or important environmental degradation
	S	

RA		S					
		1	2	3	4		
	1	Acceptable	Acceptable	Acceptable	Tolerable		
D	2	Acceptable	Acceptable	Tolerable	Intolerable		
Р	3	Acceptable	Tolerable	Intolerable	Intolerable		
	4	Tolerable	Intolerable	Intolerable	Intolerable		

2. Risk Evaluation

» Example of the Transportation/Removal stages
 → Internal Problem Analysis

Hazard	Element	Causes	Dangerous Occurrence	Dangerous Situation	Undesirable Event	Р	S	RA
		During transportation the battony	, Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable
Vibrations	Container	container is subjected to vibrations	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable
		During transportation the battery	Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable
	Container	container is subjected to shock or drop	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable
Shock or drop			Electrolyte leakage	Equipment in proximity	Corrosion	3	2	Tolerable
	Module or Cell	Shock against a heavy object or drop	Asphyxiating gas, carcinogenic substance or Carbon powder release	Equipment in proximity	Pollution of surrounding equipment	3	4	Intolerable
			Module fire	Equipment in proximity	Fire propagation	3	4	Intolerable
Stress, Compression	Container	During transportation the battery container can be subjected to compression	Deformation of the battery container	Pilling up of other containers upon it	Crush of the battery container	4	4	Intolerable
	Container	Container Shock against a sharp object	Deformation of the battery container or weakening of the metallic structure	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable
				Loss of protection against external aggressions	External aggressions	3	2	Tolerable
Sharp or cutting objects			Electrolyte leakage	Equipment in proximity	Corrosion	3	2	Intolerable
	Module or Cell Impact against a heavy object	Asphyxiating gas, carcinogenic substance or Carbon powder release	Equipment in proximity	Pollution of surrounding equipment	3	4	Intolerable	
			Module fire	Equipment in proximity	Fire propagation	3	4	Intolerable
		Duplesties of a makellin shiest pariot the	Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable
Metal projection	Container	battery container	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable

	Description	Classification	Risk/Undesirable Event	
DMM01	Determine the nature, volume and toxicity of the gas generated inside	Analysis and	Intoxication and	
I VIVIUVIU I	the battery container in case of gases being liberated from cells	test	asphyxia	
DMM02	Carry out analyses to show that in case of cell overpressure, the cells	Analysis and	Cell venting	
	venting is correctly functioning	test	Con venting	
	Carry out analyses to identify the risk of electrical hazards due to		Pollution of surrounding	
RMM03	carbon powder release (safety distance to avoid the creation of	Analysis	equinment	
	electrical arcs)		cquipment	
DMM04	Implement a thermal barrier against thermal runaway propagation	Thermal	Fire propagation	
INIVILVIU4	between cells inside the module in case of fire on one cell	protection	The propagation	
PMM05	Implement a thermal barrier to avoid fire contamination outside the	Thermal	Fire propagation	
INIVIUJ	module in case of fire on one cell	protection	тис рюраданой	
RMM06	Define a procedure for checking the defects during cell assembling	Quality check	Cell internal short circuit	
RMM07	Carry out experiments to determine the conditions which lead to fire in	Analysis	Cell internal short circuit	
	case of cell internal short circuit	7111119515	Cen internal short circuit	
RMM08	Carry out analyses to determine the level of leaking current	Test	Cell internal short circuit	
INTALIATOO	corresponding to an internal short circuit on a cell	1050		
RMM09	Use an electronic board design which avoids fire contamination on cell	Electronic	Fire propagation	
	in case of short circuit on the board	protection	тис рюраданой	
	Carry out a DFMEA ¹ analysis on battery container internal short		Battery internal short	
RMM10	circuit in order to determine the type of short circuit from which the	Analysis	circuit	
	container should be protected		circuit	
RMM11	Conceive a design that minimises the risk of insulation failure	Design	Insulation failure	
RMM12	Use electronic boards specifically designed to avoid corrosion	Design	Corrosion	
RMM13	Disable the fire detection system before entering inside the container	Rule	Asphyxia	

	Description	Classification	Risk/Undesirable Event
RMM14	Establish a visual verification of the battery container during the production phase	Quality check	Cuts and other injuries (due to sharp or cutting objects)
RMM15	Find out, according to the empty space existing in the battery container, the air leak and the result of RMM01, the acceptability of the substances released in case or thermal runway, venting or leaking cell; Calculate the maximum number of cells below which the concentration of asphyxiating, toxic, carcinogenic and flammable substances is not hazardous	Calculation	Burnt and fire propagation (due to flammable substances)
RMM16	Depending of the result of the RMM15, the battery container size should be enough to create a sufficient air renewal and stay below the hazardous concentration of flammable substances threshold	Calculation	Burnt and fire propagation (due to flammable substances)
RMM17	The maintenance and installation operators have to be qualified, strictly follow the maintenance and installation protocols and wear IPE^1	Rule	Intoxication, electrical shock and burnt (due to carcinogenic, toxic or asphyxiating substances release or high voltage or current)
RMM18	The battery container installation on customer site has to be done by qualified operators only	Rule	Electrical shock and burnt (due to high voltage or current)
RMM19	The battery container has to be equipped with a safety valve in order to avoid overpressure	Mechanical protection	High pressure
RMM20	Establish a visual inspection of the container once arrived on customer site	Quality check	Shock, metal projection and sharp or cutting object
RMM21	Install a shock sensor inside the battery container in order to see if the container has been submitted to any significant shock during transportation	Mechanical protection	Shock, metal projection and sharp or cutting object

	Description	Classification	Risk/Undesirable Event	
DMM22	The storage site should be a safe place with restricted access to	Storage	Shock, metal projection and	
KNINI22	reduce the probability of shock occurrence	instruction	sharp or cutting object	
DMM22	The place where the battery will be installed should have a	Pula	Shock, metal projection and	
KNINI25	restricted access	Ruic	sharp or cutting object	
рммэ4	The module transportation has to be done in a solid closed box	Transportation	Shock, metal projection and	
KMIMI24	with no direct or easy access	Instruction	sharp or cutting object	
	The temperature on the environment external to the battery	Storage		
RMM25	system and modules must be lower than the maximum	instruction	High temperature	
	allowable	msuucuon		
DMM26	During preventive maintenance the battery container gaskets	Storage	Vermin and other animals	
KWIWI20	have to be checked	instruction	vernini and other animals	
PMM27	The modules should not be directly installed on the ground	Rule	Vermin and other animals	
KAINIZ /	without adequate protection	Ruit		
RMM28	Use a system inside the battery container to control the humidity	Transportation	Humidity	
IXIIII20	level during transportation	Instruction	Humany	
RMM29	Perform field studies before the container installation, to avoid	Field study	Flood	
ICHINI2/	install it on areas subjected to flood	1 NR Story	11004	
RMM30	Protect the metallic structure of the container against corrosion,	Design	Corrosion	
KAINISU	e.g. using corrosion-proof paint	Design	Contonion	
RMM31	Follow the preventive maintenance plan for modules as spare	Rule	Charge after an over discharge	
ICHINIS I	part (do not recharge them after an over discharge)	Tuit	(modules in storage)	
	Preventive maintenance actions to verify the battery container			
RMM32	paint (scheduled according to the external environment	Rule	External aggressions	
	characteristics)			
RMM33	Protect each battery module and battery system metallic part	Desion	Corrosion	
Kaini35	against corrosion	Design	Contonion	
RMM3 4	During assembling phases (cells and modules) verify if each	Verification	Short circuit	
1.0101.34	connection is correct	* enneanon	Short circuit	

	Description	Classification	Risk/Undesirable Event
RMM35	Strictly follow the maintenance and user manuals	Maintenance and usage instructions	High voltage or current
RMM36	Use ESD ¹ protection equipment during electronic board handling	Maintenance and installation instructions	Electrostatic energy
RMM37	Implement an electronic protection against cell overheat	Electronic protection	Cell overheat
RMM38	Implement an electronic protection against overcharge on cell (to stop charge/discharge if a cell reach the maximum voltage value)	Electronic protection	Cell overcharge
RMM39	Implement an electronic protection against cell charge after an over discharge	Electronic protection	Charge after an over discharge
RMM40	Implement on the battery an electronic protection against overheating on battery	Electronic protection	Overheat on battery
RMM41	Implement on the battery an electronic and electrical protection against short circuit and overload to avoid fires	Electronic/Electrical protection	Battery internal short circuit/overload
RMM42	Perform electromagnetic studies during assembling to minimize the damage from electromagnetic radiation	Analysis	Electromagnetic radiation
RMM43	Provide test results during cell voltage inversion at nominal discharge current (200A/module) in order to verify there is no dangerous phenomenon	Test	Cell inversion

4. Risk Re-evaluation

» Example of the Transportation/Removal stages → Internal Problem Analysis

Hazard	Element	Causes	Dangerous Occurrence	Dangerous Situation	Undesirable Event	P	S	RA	RMM	P _{RMM}	S _{RMM}	RA _{RMM}
			Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable	RMM20	1	4	Tolerable
Vibrations	Container	During transportation the battery container is subjected to vibrations	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable	RMM26 RMM32	2	2	Acceptable
		During transportation the battery	Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable	RMM20	1	4	Tolerable
	Container	container is subjected to shock or drop	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable	RMM21 RMM26 RMM32	2	2	Acceptable
Shock or drop			Electrolyte leakage	Equipment in proximity	Corrosion	3	2	Tolerable	RMM12 RMM33	2	2	Acceptable
	Module or Cell	Shock against a heavy object or drop	Asphyxiating gas, carcinogenic substance or Carbon powder release	Equipment in proximity	Pollution of surrounding equipment	3	4	Intolerable	RMM02 RMM03 RMM24	1	3	Acceptable
			Module fire	Equipment in proximity	Fire propagation	3	4	Intolerable	RMM04 RMM05 RMM24	1	З	Acceptable
Stress, Compression	Container	During transportation the battery container can be subjected to compression	Deformation of the battery container	Pilling up of other containers upon it	Crush of the battery container	4	4	Intolerable	RMM20 RMM26	1	4	Tolerable
	Container Shock against a sharp object Container or weakening of the metallic structure a		Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable	DMM20	1	4	Tolerable
		Loss of protection against external aggressions	External aggressions	3	2	Tolerable	RMM20 RMM21	2	2	Acceptable		
Sharp or cutting objects			Electrolyte leakage	Equipment in proximity	Corrosion	3	2	Intolerable	RMM12 RMM24 RMM33	2	2	Acceptable
	Module or Cell	Module or Cell Impact against a heavy object	Asphyxiating gas, carcinogenic substance or Carbon powder release	Equipment in proximity	Pollution of surrounding equipment	3	4	Intolerable	RMM02 RMM03 RMM24	1	З	Acceptable
			Module fire	Equipment in proximity	Fire propagation	3	4	Intolerable	RMM04 RMM05 RMM24	1	3	Acceptable
		Projection of a metallic object against the	Deformation of the battery	Pilling up of other containers upon it	Crush of the battery container	3	4	Intolerable	RMM20	1	4	Tolerable
Metal projection	Container	battery container	container or weakening of the metallic structure	Loss of protection against external aggressions	External aggressions	3	2	Tolerable	RMM20 RMM21	2	2	Acceptable

STALLION FMECA – Sub-system level approach

System hierarchy

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

Probability

» Probability = function (initial failure rate, failure of present measures, number of components)

	# cells per level	# blocks per level	# modules per level	#packs per level
cell				
block	7			
module	14	2		
pack	224	32	16	
system	28000	4000	2000	125

RA		S					
		1	2	3	4		
	1	Acceptable	Acceptable	Acceptable	Tolerable		
Б	2	Acceptable	Acceptable	Tolerable	Intolerable		
•	3	Acceptable	Tolerable	Intolerable	Intolerable		
	4	Tolerable	Intolerable	Intolerable	Intolerable		

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

Failure propagation

FMECA results

Conclusions review STALLION FMECA

Risk class 3 failures per level, 2015

System level	Pack level	Module level	Block level	Cell level
		(No risk class 3 failures)	(No risk class 3 failures)	(No risk class 3 failures)
Pack on fire	Module on fire	<		
Release of poisonous gas from pack	< <	· 	<	
Release of explosive gas from pack	<<		<	
Electrocution by live <	< <			
	No sufficient gas flow from cooling tubes			

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

Risk assessment – Conclusions

» Risk of fire propagation:

- » Start with safe materials/cells fit for application \rightarrow presentation
- » Apply thermal barrier between cells in module and between modules
- » More data from cell manufacturer is needed, e.g. runaway inception temp
- » Venting tests to quantify cell venting risk

» Risk of release of explosive gas or poisonous gas:

» Apply detector for toxic and/or flammable gases

» Risk of electrocution:

» Provide strict handling/maintenance procedures, PPE (the human factor)

» General design rules for safe system

- » BMS safety functions should be redundant
- » Apply UPS for BMS if battery is empty and off-grid
- » Fail-safe mode of all electronics

» STABALID-STALLION test procedures:

- » Extra tests for certain safety issues \rightarrow presentation
- » Perform location study for risk of flooding

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Thank you!

Risk assessment of the battery system

F. J. Soares, INESC Porto fsoares@inescporto.pt

Jos van der Burgt, DNV GL Jos.vanderburgt@dnvgl.com

Düsseldorf, 10 March 2015