

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Test protocols

Christoph Borlinghaus, VDE Testing and Certification Institute

Düsseldorf, 10 March 2015

The information platform for electro technology

Organization Chart

VDE Testing and Certification Institute

STALLION-STABALID seminar, Düsseldorf

Test planning within STALLION

safety tests for the evaluation of cells & test methods

Test protocols

safety tests on module level

BMS functionality test

Module cycling without cooling

External short circuit

Overcharge

Deformation

Propagation of thermal runaway

Rough handling of battery container

+							
System level characterisation							
Integration							
System							
Module							
Cell							
Material							

Test protocols

safety tests on cell level

overchar	ge			internal short circuit				
10 °C	2 lt		pressure	1	10 °C	Cu		2 mm/min
40 °C	40 °C It/		pressure	2	40 °C	PEEK		20 mm/min
Tmax	ax It		pressure	2	25 °C	IEC 62660		10 mm/min
25°C	25°C		lt		10 °C		20 mΩ	
10 °C		lt			40 °C		100 mΩ	
40 °C		lt/5						
polarity reversal					external short circuit			

- » variation of standardized test parameters
- » development of new test methods
- » evaluation of cell safety

LFP-C 40 Ah

LFP-LTO 20 Ah

LTO-NMC 9.4 Ah LFP-C NMC-C

LiFePO4 15 Ah

NCO-LTO 16 Ah

Overcharge

outcome

- » <u>higher temperatures</u> and <u>higher charge currents</u> increase the severity of hazardous events
- » pressure device prevents inflammation
 ignition source recommended
- » thermal imaging useful to detect invisible venting activities

outcome

Polarity Reversal

outcome

- main effects: **>>**
 - most of the cells prevent charging after reversal (only heating) **>>**
 - » growth of dimension / inflation of casing
- reversal effects (e.g. plating) are amplified by higher test temperatures **>>** caused by the decreased internal resistance of the cell;

idea

- » simulation of internal short circuits by
 - » penetration without piercing
 - » exertion of external force on cell surface until breakdown of seperator
 - » variations of test parameters
 - » test temperature

test method

prismatic cells

purpose

STALLION-STABALID seminar, Düsseldorf

results (so far) - safety of cells

- » temporary ignition of cells
- » melting of casing
- malfunction of venting device
 (premature release through fracture of casing)
- » immense gaseous formation of electrolyte
- » forceful pressure release and electrolyte spillage

results (so far) - safety of cells

- » temporary ignition of cells
- » melting of casing
- malfunction of venting device
 (premature release through fracture of casing)
- » immense gaseous formation of electrolyte
- » forceful pressure release and electrolyte spillage

results (so far) - safety of cells

- » temporary ignition of cells
- » melting of casing
- malfunction of venting device
 (premature release through fracture of casing)
- » immense gaseous formation of electrolyte
- » forceful pressure release and electrolyte spillage

results (so far) - safety of cells

- » temporary ignition of cells
- » melting of casing
- malfunction of venting device (premature release through fracture of casing)
- » immense gaseous formation of electrolyte
- » forceful pressure release and electrolyte spillage

results (so far) - safety of cells

- » temporary ignition of cells
- » melting of casing
- malfunction of venting device (premature release through fracture of casing)
- » immense gaseous formation of electrolyte
- » forceful pressure release and electrolyte spillage

results (so far) - validation of test method

» the test procedure itself is **repeatable** regarding displacement and force

results (so far) - validation of test method

» material of rod: *less heat dissipation with PEEK*, thus higher cell temperatures during ISC event

results (so far) - validation of test method

- » material of rod *lessons learned*:
 - » hard-plastic is generally to weak
 - » Cu seems suitable for each kind of cell case material
 - » PEEK is not applicable for cylindric steel cases

(3) **PEEK rod with fence**

LFP-C – 40°C / 20mm/min / PEEK

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Thank you! Test protocols

Christoph Borlinghaus,

VDE Testing and Certification Institute

christoph.borlinghaus@vde.com

Düsseldorf, 10 March 2015

