

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Presentation of material selection protocol

David MERCHIN, Umicore David.merchin@umicore.com

Düsseldorf, 10 March 2015

Key megatrends for Umicore

Global leader in key materials for rechargeable batteries

Umicore RBM has already produced cathode materials to...

....provide a smartphone to every person on this planet

....power more then 1Million EV's

Cathode Material Choice Strongly Determines Characteristics & Performance of Li-Ion Batteries Umicore is integrated along the Li-ion battery value chain

Application know-how enables Umicore to support end-user in terms of:

Performance Overall system cost Product development Future roadmaps

Report on methodology for selecting appropriate cathode/anode materials Choice of appropriate active material couple

Figure 1: Energy diagram of battery Materials (Source: Copyright: Dispatch Energy Innovations GmbH)

10 Mar 2015 STALLION–STABALID seminar, Düsseldorf

From LIB Characteristics to Active Materials Breakthrough materials are first tested in PE

and xEV markets

Frequent discharge	Frequency regulation, Windturbines High discharge rate	Load leveling, PV, Arbitrage Low cost per cycle EV type NMC, LFP Energy
Infrequent discharge	Power quality, Primary reserve High Power HEV type NMC, NCA	Capacity credit, Energy back-up High Calendar life NMC, NCA
-	15min – 1h storage	4h – 8h storage
STAND	10 Mar 20 STABALID STALLION–STABALID SE	015 *** eminar, Düsseldorf ***

D4.1 - Report on methodology for selecting appropriate cathode/anode materials

Tests done a cell level @ Umicore Applied Tech labs (1Ah)

Graphical representation of safety test results

- Three pillars for selection: **>>**
 - **Safety** or reliability **>>** test to identify safest materials
 - » Price analysis of less expensive active materials
 - » Convert end-users needs and complete systems characteristics to battery and materials characteristics.

STABALID

Closing the loop via battery recycling Umicore Battery Recycling

Recycling of LIB cells, packs, production scrap

- Global drop-off points for collection of spent material
- Recycling installation in Hoboken, Belgium
 - Capacity: 7000 mT p.a.
 - Excellent energy- and CO₂-balance
- Selected partner for Tesla and Toyota
- Re-using metals reduces market dependency

Supporting the deployment of safe Li-ion stationary batteries for large-scale grid applications

Thank you! Presentation of material selection protocol

David MERCHIN, Umicore David.merchin@umicore.com

Düsseldorf, 10 March 2015