Recommended Practice on grid-connected energy storage

STALLION-STABALID End Seminar 10 March 2015
Content

1. Who are we

2. Energy Storage – the need for standardization

3. GRIDSTOR
 1. Concept of Recommended Practices
 2. Scope and structure
 3. Invitation to join

4. GRIDSTOR and other international activities
Introduction of DNV GL

DNV GL Group
Headquarter: Oslo, Norway

- **Maritime**
 - Headquartered in Hamburg, Germany
 - 5,600 employees
 - 80 countries

- **Oil & Gas**
 - Headquartered in Høvik, Norway
 - 5,800 employees
 - 30 countries

- **Energy**
 - Headquartered in Arnhem, Netherlands
 - 3,100 employees
 - 30 countries

- **Business Assurance**
 - Headquartered in Milan, Italy
 - 2,000 employees
 - 50 countries
Combined strength to support Energy customers

3000 energy experts help customers throughout the electrical power industry realise efficient, reliable and clean energy for today and the future

*Renewables Certification services are offered separate from remaining services to ensure impartiality and to fulfil accreditation requirements of DIN EN ISO IEC 17065:2013
DNV GL Energy storage services

Impact
- Technology and Market assessment
- Business case analysis
- (Grid) Modelling
- Due Diligence
- Technology selection

Performance
- Modelling
- Testing
- Power Failure Investigation
- Prototype development
- Inspection

Implementation
- Owners engineer
- Bankability assessment
- Procurement and commissioning support.
- Acceptance test
Our laboratories

Arnhem’s Energy Storage Lab
- Battery testing capabilities
- Ranging from micro-Amps to hundreds of Amp
- Customized performance tests

BEST Test & Commercialization Center
- Collaboration between DNV GL and NY BEST
- $23 million public-private investment
- From single cells to complete systems with cycle capacities up to 240 kW
- Systems up to 2 MW can be tested in conjunction with the KEMA Powertest lab in Chalfont, Pennsylvania
- NY BEST is a consortium of more than 125 manufacturers, suppliers, universities, utilities and engineering firms
Content

1. Who are we

2. Energy Storage – the need for standardization

3. GRIDSTOR
 1. Concept of Recommended Practices
 2. Scope and structure
 3. Invitation to join

4. GRIDSTOR and other international activities
The need for standardization

- **Present situation:**
 - Increasing demand for Grid-Connected Energy Storage Systems
 - Increasing attention to safety, operation and performance
 - Mainly **project**-based market

- **Survey** in 2014 amongst electric utilities, storage vendors and other stakeholders. Outcome survey: "Lack of clarity on applicable standards for grid-connected energy storage systems"
 - Difficulty proving the validity of a system
 - Risk for sector as a whole

- **Global activities: e.g.**
 - IEC TC 120
 - DOE / Sandia
 - ...
Existing standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Application Type</th>
<th>Category</th>
<th>Technology Type</th>
<th>Level</th>
<th>Application Area</th>
<th>Requirements</th>
<th>Testing Procedures</th>
<th>Other Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JIS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GB</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
- ASME: American Society of Mechanical Engineers
- EN: European Norm
- ISO: International Organization for Standardization
- JIS: Japan Industrial Standards
- GB: Chinese Standards

Contact DNV-GL for detailed information.
Existing standards

“There are already many standards, and together they cover all relevant aspects of grid-connected energy storage.”

Well...No:

- **No single standard** that comprehensively covers and links all aspects relevant for grid-connected energy storage (fragmentation)
- Unclear or *impossible to combine* ~100 standards into 1 comprehensive standard
 - Wildly differing scopes
 - Difficult to read/understand
 - Difficult to get overview, know and choose from all standards
- A standard may *address* an aspect (“X”), but may not *cover it completely*
- A standard may *address* an aspect (“X”), but may have a *low quality* for it
- *Gaps* exist: some aspects are not or insufficiently covered
Need assessment

Energy Storage System

Battery space

Pack

Sub-pack

Module

Cell

Overall system standard

Existing standards

Gaps in standards

Non-relevant standards

Interrelations missing

→ Overall system standard
Content

1. Who are we

2. Energy Storage – the need for standardization

3. GRIDSTOR
 1. Concept of Recommended Practices
 2. Scope and structure
 3. Invitation to join

4. GRIDSTOR and other international activities
GRIDSTOR

- **DNV GL** setting up & coordinating an **publicly available Joint Industry Project (JIP)** to facilitate / stimulate **optimal** and **safe** implementation of Energy Storage

- **JIP consortium of approx. 10 to 15 participants**
 - End-users (DSO, TSO, utilities etc)
 - Energy Storage system integrators, suppliers
 - Regulators

- **Deliverables:** *Recommended Practice(s) on grid-connected energy storage*
 - guidelines and methods to evaluate, assess and test safety, operation and performance
 - taking into account worldwide accepted regulations and best practices like ISO, IEC and IEEE standards
 - Outcomes of projects such as Stallion and Stabalid

- **Global approach:** US, EU, APAC and ME
Example Recommended Practice

SAFER, SMARTER, GREENER

DNV GL GUIDELINE FOR LARGE MARITIME BATTERY SYSTEMS
Example Recommended Practice

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DEFINITIONS AND ABBREVIATIONS</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Battery System Definition</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Abbreviations</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>PROCESS RECOMMENDATIONS</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Feasibility Studies</td>
<td>6</td>
</tr>
<tr>
<td>4.2</td>
<td>Outline and Contract Specification</td>
<td>6</td>
</tr>
<tr>
<td>4.3</td>
<td>Battery System Design and Procurement</td>
<td>8</td>
</tr>
<tr>
<td>4.4</td>
<td>Fabrication</td>
<td>9</td>
</tr>
<tr>
<td>4.5</td>
<td>Battery System Testing by Manufacturer</td>
<td>11</td>
</tr>
<tr>
<td>4.6</td>
<td>Installation and Commissioning</td>
<td>13</td>
</tr>
<tr>
<td>4.7</td>
<td>Operation and Maintenance</td>
<td>14</td>
</tr>
<tr>
<td>4.8</td>
<td>Documentation Requirements</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>MARITIME BATTERY SYSTEM RECOMMENDATIONS</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>Battery Space</td>
<td>17</td>
</tr>
<tr>
<td>5.2</td>
<td>Battery System</td>
<td>20</td>
</tr>
<tr>
<td>5.3</td>
<td>Consumers – Electrical Distribution DC</td>
<td>28</td>
</tr>
<tr>
<td>5.4</td>
<td>Automation – Energy Management System</td>
<td>28</td>
</tr>
<tr>
<td>5.5</td>
<td>Power input – Fast Shore Connection</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>FUTURE OUTLOOK</td>
<td>31</td>
</tr>
<tr>
<td>6.1</td>
<td>Trends</td>
<td>31</td>
</tr>
<tr>
<td>6.2</td>
<td>Recommendations for R&D</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>CONTRIBUTORS</td>
<td>32</td>
</tr>
<tr>
<td>Changes</td>
<td>Summary of changes</td>
<td>Edition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>DNV-RP-A201</td>
<td>Plan Approval Documentation Types – Definitions</td>
<td>2014-11</td>
</tr>
<tr>
<td>DNV-RP-A203</td>
<td>Technology Qualification</td>
<td>2013-07</td>
</tr>
<tr>
<td>DNV-RP-A204</td>
<td>Quality Survey Plan (QSP) for Offshore Class New-building Surveys</td>
<td>2011-09</td>
</tr>
<tr>
<td>DNV-RP-A205</td>
<td>Offshore Classification Projects - Testing and Commissioning</td>
<td>2013-10</td>
</tr>
<tr>
<td>DNV-RP-B101</td>
<td>Corrosion Protection of Floating Production and Storage Units</td>
<td>2007-04</td>
</tr>
<tr>
<td>DNV-RP-B401</td>
<td>Cathodic Protection Design</td>
<td>2010-10</td>
</tr>
<tr>
<td>DNV-RP-C101</td>
<td>Thickness Diminution for Mobile Offshore Units</td>
<td>2014-05</td>
</tr>
<tr>
<td>DNV-RP-C102</td>
<td>Structural Design of Offshore Ships</td>
<td>2002-02</td>
</tr>
<tr>
<td>DNV-RP-C103</td>
<td>Column-Stabilised Units</td>
<td>2012-04</td>
</tr>
<tr>
<td>DNV-RP-C104</td>
<td>Self-elevating Units</td>
<td>2012-11</td>
</tr>
<tr>
<td>DNV-RP-C201</td>
<td>Buckling Strength of Plated Structures</td>
<td>2010-10</td>
</tr>
<tr>
<td>DNV-RP-C202</td>
<td>Buckling Strength of Shells</td>
<td>2013-01</td>
</tr>
<tr>
<td>DNV-RP-C203</td>
<td>Fatigue Design of Offshore Steel Structures</td>
<td>Replaced by DNVGL-RP-0005, 2014-06</td>
</tr>
<tr>
<td>DNV-RP-C204</td>
<td>Design against Accidental Loads</td>
<td>2010-10</td>
</tr>
</tbody>
</table>
Suggested Scope

- Based on feedback key players
- Final scope to be approved by consortium
Benefits

- **Benefits of participating in the Joint Industry Project**
 - unique opportunity to **influence** development of a global industry-wide recommended practice for grid-connected energy storage systems
 - ensuring the RP takes into account the applications or energy storage types **relevant to your organisation**
 - “Join the club”: enter a network of users and producers, sharing data, best practices and lessons learned

- **Benefits of the Recommended Practice**
 - **qualification** of your technology that you can show to your customers
 - **reduced standards list** you can use to begin testing your product
 - **pro-active scope** in order to meet upcoming regulations
 - focused on **end-users** as well as manufacturers / system integrators
 - **fast introduction**: filling the time gap between officially committee adopted standards and the market pace
End result of GRIDSTOR

- Main results of Recommended Practice:
 - Recommended configuration method
 - Recommended risk evaluation method
 - Recommended life cycle assessment method (economics, environment)
 - Recommended performance test suite
 - Recommended safety test suite

- Defining building blocks for an open competitive market place
- Overall layer over local standards and regulations
- Continuous updates following technology development & end-user applications
- What GRIDSTOR is not: value assessment / markets & regulations
Project Structure GRIDSTOR

- **Timeline:** Kick-off Feb 2015
- **Recommended Practice finished:** Dec 2015
- **Approach:** core group develops standards by expansion and combination
 - extensive feedback and revision by partners
- **Project organisation:**
 - Partners will have a representative in the steering committee of the JIP
 - managed by DNV GL
Content

1. Who are we

2. Energy Storage – the need for standardization

3. Existing initiatives

4. GRIDSTOR
 1. Concept of Recommended Practices
 2. Scope and structure
 3. Invitation to join

5. GRIDSTOR and other international activities
Linking developments in ES recomm. practices / standards (1)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TECHNICAL COMMITTEE NO.120: ELECTRICAL ENERGY STORAGE (EES) SYSTEMS

Energy Storage Safety
DOE OE Energy Storage Peer Review
September 17, 2014

Sean J. Hearne
Manager, Energy Storage Technology & Systems

12 September 2014

Media Contact: John Grimes on 0400 102 396

Energy Storage Peak Body Launched

Today the Australian Energy Storage Council – the new peak body for the energy storage industry – has been formally launched, opening up exciting new opportunities for the sector in Australia.
GRIDSTOR & US developments

- Close ties with DOE and various standardisation committees
- DNV GL to organise workshop series in 2015
 - Key participants, such as Sandia, DoE
 - Goal: create US guidance document on implementation and selection of existing standards on grid-connected energy storage by late 2015
 - Strong exchange with GRIDSTOR (frequent updates, sharing personnel etc.)
GRIDSTOR & IEC TC 120

GRIDSTOR RP
- RP delivered in 2015
- Max. 15 participants
- Flexible after launch
- RP new in energy sector, coordinator well established
- Project contribution 5k€-20k€, free RP

IEC TC 120
- Main deliverables end 2017
- <100 members from 17 countries
- Rigid after launch
- Standards and organisation well established in energy sector
- No contribution, fee for using standard

Opportunity
Summary

- Perceived need to move from project-based to product-based sector

- Many standards exist, none yet on systems level

- GRIDSTOR Joint Industry Project to create Industry Recommended Practices

- Scope: safety, operation, performance

- Tuned with international developments

- Already kicked-off but limited number of seats left
GRIDSTOR – Safe and sound implementation of grid-connected energy storage systems

Haike van de Vegte
Haike.vandevegte@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER